

Dr. Bjorn Baselet

Biomedical countermeasures to increase radiation resistance of astronauts

lonizing radiation

Altered gravity

Psychological stress

Visual impairment

Cancer

Cardiovascular disease

Central nervous system injury

Osteoporosis

Immune dysfunction

Cataract

Acute radiation syndrome

Motion sickness

Fluid distribution

Visual impairment

Cancer

Cardiovascular disease

Central nervous system injury

Osteoporosis

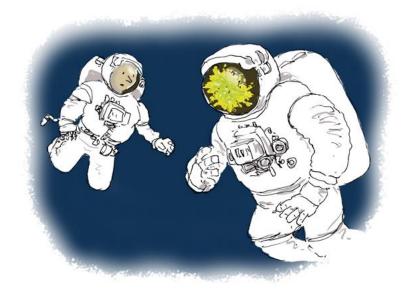
Fluid distribution

Degenerative tissue effects

Muscle atrophy

Cataract

Acute radiation syndrome


Motion sickness

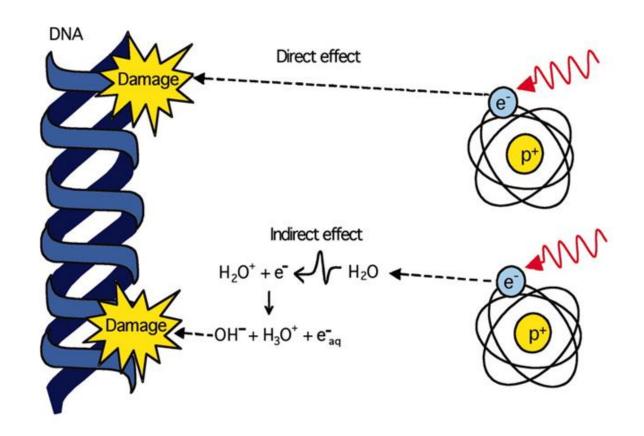
Immune dysfunction

Open research questions in space human biology

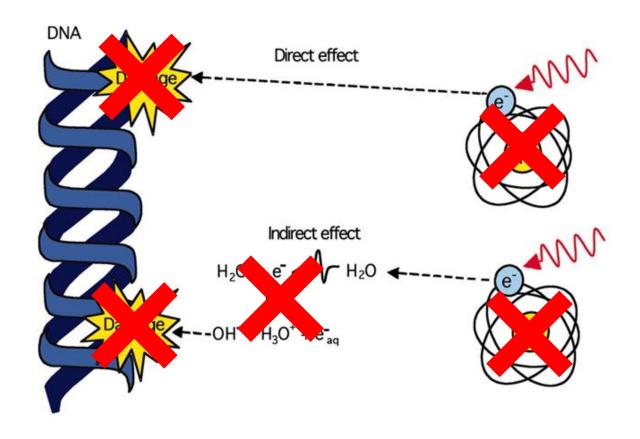
How do **space stressors** cause adverse health effects in humans?

How can we **prevent** this from happening with countermeasures?

Space radiation environment


Solar particle events

Galactic cosmic rays


Van Allen Belts

MORE DAMAGING

Radiobiology basics: DNA damage paradigm

Levels of radiation protection

1. Stop Radiation

2. Stop ROS

3. Repair damage

Level 1: Stopping radiation

Stopping radiation

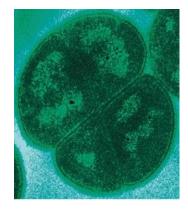
 No known effective biological mechanism to stop or shield from ionizing radiation

- Solutions:
 - Operational countermeasures
 - Limit time in space
 - Shortening overall mission duration
 - Reducing extravehicular activity time or spacewalks
 - Plan space missions during times of reduced solar storm activity
 - Engineering countermeasures
 - Structures or tools to shield astronauts from radiation e.g. Zvezda

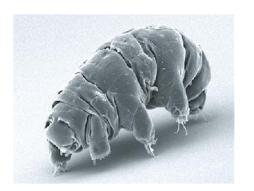
Level 2 and 3: Stopping ROS Repairing damage

Stopping ROS and repairing damage

- Can be done at the level of an individual!
- **Biology** comes into play



What is radiation resistance?


 Capacity of an organism to protect against, repair and remove damage caused by ionizing radiation

Varies greatly between different organisms & individuals (LD50/30)

Deinococcus radiodurans

7 000 Gy

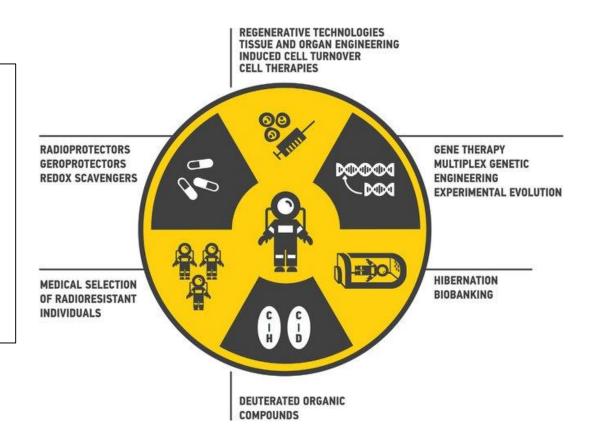
Tardigrades

5 000 Gy

Humans

4 - 5 Gy

Roadmap towards enhancing human radiation resistance

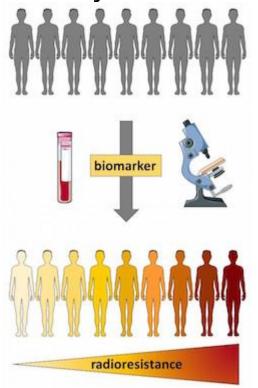

www.impactjournals.com/oncotarget/

Reference

Oncotarget, Advance Publications 2018

Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization

Franco Cortese^{1,2}, Dmitry Klokov^{3,4}, Andreyan Osipov^{5,6,7}, Jakub Stefaniak^{1,8}, Alexey Moskalev^{7,9,10}, Jane Schastnaya⁵, Charles Cantor¹¹, Alexander Aliper^{5,12}, Polina Mamoshina^{5,13}, Igor Ushakov⁶, Alex Sapetsky⁶, Quentin Vanhaelen⁵, Irina Alchinova^{14,15}, Mikhail Karganov¹⁴, Olga Kovalchuk^{16,17}, Ruth Wilkins¹⁸, Andrey Shtemberg¹⁹, Marjan Moreels²⁰, Sarah Baatout^{20,21}, Evgeny Izumchenko^{5,22}, João Pedro de Magalhães^{1,23}, Artem V. Artemov⁵, Sylvain V. Costes²⁴, Afshin Beheshti^{25,26}, Xiao Wen Mao²⁷, Michael J. Pecaut²⁷, Dmitry Kaminskiy^{1,28}, Ivan V. Ozerov^{5,6}, Morten Scheibve-Knudsen²⁹ and Alex Zhavoronkov^{1,5}



1 | Selection of radioresistant crews

- Individual response to ionizing radiation
- Assessment by use of biomarkers and assays
- Include test to determine astronaut individual radiosensitivity?

2 | Pharmaceutical interventions

Radioprotectors

- Protect DNA from radiation interaction
- E.g. Amifostine

Geroprotectors

- Stop aging = stop radiation effects?
- E.g. metformin, curcumin

Redox scavengers

- Remove oxidants from the cells
- E.g. ascorbic acid, melatonin

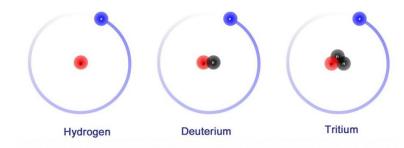
3 | Hibernation: sleeping your way out

- Hibernation = torpor = dormancy
 - Low-energy state linked to sleep
 - Considerable slowdown of all the vital processes in the body
 - → Synthetic Torpor
- Slows down body temperature and metabolism, and induces tissue hypoxia

No food and water intake = <<< €€€

3 | Biobanking: having spare parts

- Biorepository that stores biological samples for future use
- Preservation of viability, completely stop all biological reactions
- Storage temperature?
- Liquid nitrogen -196°C
 - Cost?
 - Explosion risk?
- Cryoprotectants?

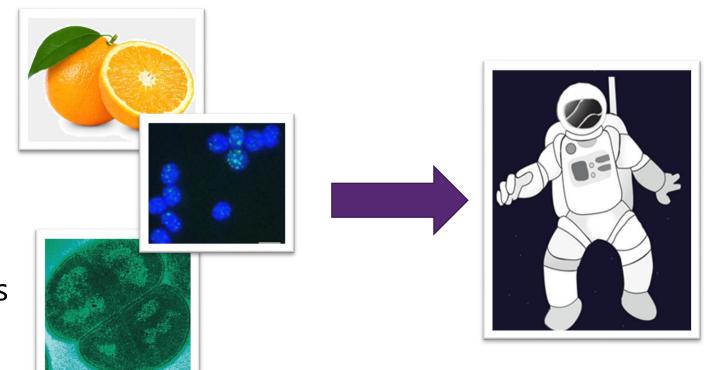

4 | Tissue engineering and regenerative medicine

- Facilitate the elimination and substitution of endogenous cells damaged by cosmic irradiation
- Replace old organs and make fresh ones!

5 | Deuterated organic compounds

- Deuterium: stable hydrogen isotope
- Organic compounds contain carbon-hydrogen (C-H) bonds
- C-²H is stronger than C-¹H
 - More energy required to break bond
 - Less DNA damage if DNA was deuterated
- Heavy water (D₂O) as radioprotective strategy?

- Issues:
 - Organisms are not energetically adapted to break down organic compounds containing deuterium
 - Rate of metabolic reactions may be slower: deterioration normal metabolism
 - Extremely costly
 - → Requires good titration and safety levels!

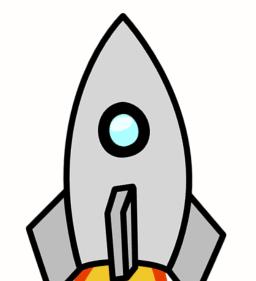

6 | Gene therapy

(Over)expression of endogenous and exogenous genes

1. Antioxidants

2. DNA repair genes

3. Radioprotective transgenes


Food for thought

- Currently there is minimal research being done for radioresistance against space radiation
- All the approaches could significantly empower our ability to protect space mission crew members against cosmic radiation, but has also a value on earth e.g. in cancer treatment
- Although speculative, these strategies should be considered as a foundation for future research directions

The end

Thank you for your attention

Copyright © SCK CEN

PLEASE NOTE!

This presentation contains data, information and formats for dedicated use only and may not be communicated, copied, reproduced, distributed or cited without the explicit written permission of SCK CEN.

If this explicit written permission has been obtained, please reference the author, followed by 'by courtesy of SCK CEN'.

Any infringement to this rule is illegal and entitles to claim damages from the infringer, without prejudice to any other right in case of granting a patent or registration in the field of intellectual property.

SCK CEN

Studiecentrum voor Kernenergie Centre d'Etude de l'Energie Nucléaire Belgian Nuclear Research Centre

> Stichting van Openbaar Nut Fondation d'Utilité Publique Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSELS Operational Office: Boeretang 200 – BE-2400 MOL